Stability analysis and numerical evaluations of a COVID-19 model with vaccination – BMC Medical Research … – BMC Medical Research Methodology
							April 28, 2024
							    Let us emphasize that the spectral matrix collocation approach    based on the SCPSK may not yield convergence on a long time    interval ([t_a,t_b]). One    remedy is to use a large number of bases on the long domains    accordingly to reach the desired level of accuracy. Another    approach is to divide the given interval into a sequence of    subintervals and employ the proposed collocation scheme on each    subinterval consequently.  
    Towards this end, we split the time interval ([t_a,t_b]) into (Nge 1) subdomains in the forms  
      $$begin{aligned}      K_n:=[t_{n},t_{n+1}],quad n=0,1,ldots , N-1.      end{aligned}$$    
    Here, we have (t_0:=t_a) and    (t_N:=t_b). The uniform time    step is taken as (h=t_{n+1}-t_n=(t_b-t_a)/N). Note that    by selecting (N=1), we turn    back to the traditional spectral collocation method on the    whole domain ([t_a,t_b]).    Therefore, on each subinterval (K_n) we take the approximate solution    of the modelEq. (1) to be in the    formEq. (25) as  
      $$begin{aligned} x^n_{mathcal      {J}}(t):=sum limits _{j=0}^{mathcal {J}} omega      ^n_j,mathbb {U}_j(t)=varvec{U}_{mathcal      {J}}(t),varvec{W}^n_mathcal {J},quad tin K_n,      end{aligned}$$    
      (29)    
    where we utilized the notations  
      $$begin{aligned}      varvec{W}_{mathcal {J}}^n:=left[ omega ^n_0quad omega      ^n_1quad ldots quad omega ^n_{mathcal {J}}right]      ^T,quad varvec{U}_{mathcal {J}}(t):=left[ mathbb      {U}_0(t)quad mathbb {U}_1(t)quad ldots quad mathbb      {U}_J(t)right] , end{aligned}$$    
    as the vector of unknown coefficients and the vector of SCPSK    bases respectively. Once we get the all local approximate    solutions for (n=0,1,ldots    ,N-1), the global approximate solution on the given    (large) interval ([t_a,t_b])    will be constructed in the form  
      $$begin{aligned} x_{mathcal      {J}}(t)=sum limits _{n=0}^{N-1} c_n(t),x^n_{mathcal      {J}}(t),quad c_n(t):= left{ begin{array}{ll} 0, &{}      tnotin K_n,\ 1, &{} tin K_n.\ end{array}right.      end{aligned}$$    
    In order to collocate a set of ((mathcal {J}+1)) linear equations to    be obtained later at some suitable points, we consider the    roots of (mathbb {U}_{mathcal    {J}+1}(t)) on the subinterval (K_n). By modifying the points    giveninEq. (17), we take    the collocation nodes as  
      $$begin{aligned} t_{nu      ,n}=frac{1}{2}left( t_n+t_{n+1}+h,cos left( frac{nu      ,pi }{mathcal {J}+2}right) right) ,quad nu =1,2,ldots      ,mathcal {J}+1. end{aligned}$$    
      (30)    
    At the end, we note that in the proposed splitting approach,    the given initial conditions of the underlying model problem    are prescribed on the first subinterval (K_0). Once the approximate solution on    (K_0=[t_0,t_1]) is    determined, we utilize it to assign the initial conditions on    the next time interval (K_1). To do so, it is sufficient to    evaluate the obtained approximation at (t_1). We repeat this idea on the next    subintervals in order until we arrive at the last subinterval    (K_{N-1}). Below, we    illustrate the main steps of our matrix collocation algorithm    on an arbitrary subinterval (K_n) for (n=0,1,ldots ,N-1).  
    Our chief aim is to solve the nonlinear COVID-19    systemEq. (1) efficiently    by using the spectral method based on SCPSK basis. Towards this    end, we first need to get rid of the nonlinearity of the model.    This can be done by employing the Bellmans quasilinearization    method (QLM)[39]. Thus we will get    more advantages in terms of running time, especially for large    values of J in comparison to the performance of directly    applied collocation methods to nonlinear models, see    cf.[40,41,42]. By combining the    idea of QLM and the splitting of the domain we will obtain more    gains in terms of accuracy for the approximate solutions of    nonlinear modelEq. (1). Let us    first describe the technique of QLM. For more information, we    may refer the readers to the above-mentioned works.  
    By reformulating the original COVID-19 modelEq.    (1) in a compact    form we get  
      $$begin{aligned} frac{d}{dt}      varvec{z}(t)=varvec{G}(t,varvec{z}(t)),      end{aligned}$$    
      (31)    
    where  
      $$begin{aligned}      varvec{z}(t)=left[ begin{array}{c} S(t)\ S_v(t)\ I(t)\      I_v(t)\ R(t)\ R_v(t)\ J(t)\ J_v(t) end{array}right]      ,quad varvec{G}(t,varvec{z}(t))=left[ begin{array}{c}      g_1(t)\ g_2(t)\ g_3(t)\ g_4(t)\ g_5(t)\ g_6(t)\      g_7(t)\ g_8(t) end{array}right] = left[ begin{array}{c}      Lambda - beta S(I+I_v)- (lambda +mu ) S+ theta _1 R\      -beta ' S_v(I+ I_v)+ theta _2R_v+ lambda S- (delta +mu )      S_v\ beta S(I+ I_v)- (gamma _1+alpha _1+mu ) I \ beta      ' S_v(I+ I_v)- (gamma _2+alpha _2+mu )I_v\ gamma _1      I-(theta _1+mu ) R+ eta _1 J \ gamma _2 I_v- (theta      _2+mu ) R_v+ eta _2J_v+ delta S_v\ alpha _1 I- (eta      _1+mu _1)J\ alpha _2I_v- (eta _2+mu _2) J_v      end{array}right] . end{aligned}$$    
    To begin the QLM process, we assume (varvec{z}_0(t)) is available as an    initial rough approximation for the solution (varvec{z}(t)) of the COVID-19    systemEq. (31). Through    an iterative manner, the QLM procedure reads as follows  
      $$begin{aligned}      frac{d}{dt}varvec{z}_{s}(t)approx      varvec{G}(t,varvec{z}_{s-1}(t))+varvec{G}_{varvec{z}}(t,varvec{z}_{s-1}(t)),left(      varvec{z}_{s}(t)-varvec{z}_{s-1}(t)right) ,quad      s=1,2,ldots . end{aligned}$$    
    Here, the notation (varvec{G}_{varvec{z}}) stands for the    Jacobian matrix of the COVID-19 systemEq. (31), which is    of size 8 by 8. By performing some calculations we reach the    linearized equivalent model form as  
      $$begin{aligned}      frac{d}{dt}varvec{z}_{s}(t)+varvec{M}_{s-1}(t),varvec{z}_{s}(t)=varvec{r}_{s-1}(t),qquad      s=1,2,ldots , end{aligned}$$    
      (32)    
    where (varvec{M}_{s-1}(t):=varvec{J}(S_{s-1}(t),    (S_v)_{s-1}(t), I_{s-1}(t), (I_v)_{s-1}(t))) as the    Jacobian matrix (varvec{J})    previously constructed inEq. (7). Also    we have  
      $$begin{aligned}      varvec{z}_{s}(t)= left[ begin{array}{c} S_{s-1}(t)\      (S_v)_{s-1}(t)\ I_{s-1}(t)\ (I_v)_{s-1}(t)\ R_{s-1}(t)\      (R_v)_{s-1}(t)\ J_{s-1}(t)\ (J_v)_{s-1}(t)      end{array}right] ,quad varvec{r}_{s-1}(t)= left[      begin{array}{c} Lambda +beta ,S_{s-1}(t)Big      (I_{s-1}(t)+(I_v)_{s-1}(t)Big )\ beta      ',(S_v)_{s-1}(t)Big (I_{s-1}(t)+(I_v)_{s-1}(t)Big )\      -beta ,S_{s-1}(t)Big (I_{s-1}(t)+(I_v)_{s-1}(t)Big )\      -beta ',(S_v)_{s-1}(t)Big (I_{s-1}(t)+(I_v)_{s-1}(t)Big      )\ 0\ 0\ 0\ 0 end{array}right] . end{aligned}$$    
    Along with the systemEq. (32) the    initial conditions  
      $$begin{aligned}      varvec{z}_{s}(0)=left[ begin{array}{cccccccc}      S_0&S_{v0}&I_0&I_{v0}&R_0&R_{v0}&J_0&J_{v0}      end{array}right] ^T, end{aligned}$$    
      (33)    
    are given due toEq. (2). We now    are able to solve the family of linearized initial-value    problemsEqs. (32)-(33)    numerically by our proposed matrix collocation method on an    arbitrary (long) domain ([t_a,t_b]). For this purpose and for    clarity of exposition, we restrict our illustrations to a local    subinterval (K_n) for    (n=0,1,ldots ,N-1).  
    In view ofEq. (29) by    utilizing only ((mathcal    {J}+1)) SCPSK basis functions, we assume that the eight    solutions of systemEq. (32) can    be represented in terms ofEq. (29).    Thus, we take these solutions at iteration (sge 1) as  
      $$begin{aligned} left{      begin{array}{l} S^{n}_{mathcal {J},s}(t)=sum      _{j=0}^{mathcal {J}}omega ^{n,s}_{j,1},mathbb      {U}_j(t)=varvec{U}_{mathcal      {J}}(t),varvec{W}^{n,s}_{mathcal {J},1},quad      (S_v)^{n}_{mathcal {J},s}(t)=sum _{j=0}^{mathcal      {J}}omega ^{n,s}_{j,2},mathbb      {U}_j(t)=varvec{U}_{mathcal      {J}}(t),varvec{W}^{n,s}_{mathcal {J},2},\ I^{n}_{mathcal      {J},s}(t),=sum _{j=0}^{mathcal {J}}omega      ^{n,s}_{j,3},mathbb {U}_j(t)=varvec{U}_{mathcal      {J}}(t),varvec{W}^{n,s}_{mathcal {J},3},quad      (I_v)^{n}_{mathcal {J},s}(t)~=sum _{j=0}^{mathcal      {J}}omega ^{n,s}_{j,4},mathbb      {U}_j(t)=varvec{U}_{mathcal      {J}}(t),varvec{W}^{n,s}_{mathcal {J},4},\ R^{n}_{mathcal      {J},s}(t)=sum _{j=0}^{mathcal {J}}omega      ^{n,s}_{j,5},mathbb {U}_j(t)=varvec{U}_{mathcal      {J}}(t),varvec{W}^{n,s}_{mathcal {J},5},quad      (R_v)^{n}_{mathcal {J},s}(t)=sum _{j=0}^{mathcal      {J}}omega ^{n,s}_{j,6},mathbb      {U}_j(t)=varvec{U}_{mathcal      {J}}(t),varvec{W}^{n,s}_{mathcal {J},6},\ J^{n}_{mathcal      {J},s}(t),=sum _{j=0}^{mathcal {J}}omega      ^{n,s}_{j,7},mathbb      {U}_j(t)=varvec{U}_{J}(t),varvec{W}^{n,s}_{mathcal      {J},7},quad (J_v)^{n}_{mathcal {J},s}(t),=sum      _{j=0}^{mathcal {J}}omega ^{n,s}_{j,8},mathbb      {U}_j(t)=varvec{U}_{mathcal      {J}}(t),varvec{W}^{n,s}_{mathcal {J},8},\      end{array}right. end{aligned}$$    
      (34)    
    for (tin K_n). Moreover, by    (varvec{W}^{n,s}_{mathcal {J},i}=    left[ begin{array}{cccc} omega ^{n,s}_{0,i}&omega    ^{n,s}_{1,i}&dots&omega ^{n,s}_{mathcal {J},i}    end{array}right] ^T) we denote the vectors of    unknowns for (1le ile 8)    at the iteration (sge 1).    Also, the vector of SCPSK basis, i.e., (varvec{U}_mathcal {J}(t)) is defined    inEq. (29). We next    provide a decomposition for (varvec{U}_mathcal {J}(t)) given by  
      $$begin{aligned}      varvec{U}_mathcal {J}(t)=varvec{Q}_mathcal      {J}(t),varvec{F}_mathcal {J}. end{aligned}$$    
      (35)    
    Here, the vector (varvec{Q}_mathcal {J}(t)) including    the powers of ((t-t_n))    introduced by  
      $$begin{aligned}      varvec{Q}_mathcal {J}(t)=left[ 1quad t-t_nquad      (t-t_n)^{2}quad ldots quad (t-t_n)^{mathcal {J}}right] .      end{aligned}$$    
    The next object is the matrix (varvec{F}_mathcal    {J}=(f_{i,j})_{i,j=0}^{mathcal {J}}) of size    ((mathcal {J}+1)times (mathcal    {J}+1)). The entries of the latter matrix are given    inEq. (15). One can    also show that (det    (varvec{F}_mathcal {J})ne 0) and it is a triangular    matrix. It follows that  
      $$begin{aligned} f_{i,j}:= left{      begin{array}{ll} o_{i,j}, &{} textrm{if}~ ile j,\ 0,      &{} textrm{if}~ i> j. end{array}right.      end{aligned}$$    
    We then insert the obtained term (varvec{U}_mathcal {J}(t)) inEq.    (35)    intoEq. (34). The    resulting expansions are  
      $$begin{aligned} left{      begin{array}{l} S^{n}_{mathcal      {J},s}(t)=varvec{Q}_mathcal {J}(t),varvec{F}_mathcal      {J},varvec{W}^{n,s}_{mathcal {J},1},quad      (S_v)^{n}_{mathcal {J},s}(t)=varvec{Q}_mathcal      {J}(t),varvec{F}_mathcal {J},varvec{W}^{n,s}_{mathcal      {J},2},\ I^{n}_{mathcal {J},s}(t),=varvec{Q}_mathcal      {J}(t),varvec{F}_J,varvec{W}^{n,s}_{mathcal {J},3},quad      (I_v)^{n}_{mathcal {J},s}(t)~=varvec{Q}_mathcal      {J}(t),varvec{F}_mathcal {J},varvec{W}^{n,s}_{mathcal      {J},4},\ R^{n}_{mathcal {J},s}(t) =varvec{Q}_mathcal      {J}(t),varvec{F}_mathcal {J},varvec{W}^{n,s}_{mathcal      {J},5},quad (R_v)^{n}_{mathcal      {J},s}(t)=varvec{Q}_mathcal {J}(t),varvec{F}_mathcal      {J},varvec{W}^{n,s}_{mathcal {J},6},\ J^{n}_{mathcal      {J},s}(t), =varvec{Q}_mathcal {J}(t),varvec{F}_mathcal      {J},varvec{W}^{n,s}_{mathcal {J},7},quad      (J_v)^{n}_{mathcal {J},s}(t),=varvec{Q}_mathcal      {J}(t),varvec{F}_mathcal {J},varvec{W}^{n,s}_{mathcal      {J},8}, end{array}right. tin K_n. end{aligned}$$    
      (36)    
    We then proceed by nothing that the derivative of the vector    (varvec{Q}_mathcal {J}(t))    can be stated in terms of itself. A vivid calculation reveals    that  
      $$begin{aligned}      dot{varvec{Q}}_{mathcal {J}}(t)=varvec{Q}_{mathcal      {J}}(t),varvec{D}_mathcal {J},quad varvec{D}_mathcal      {J}=left[ begin{array}{lllll} 0 &{} 1 &{} 0      &{}ldots &{} 0\ 0 &{} 0 &{} 2 &{}ldots      &{} 0\ vdots &{} vdots &{} ddots      &{}vdots &{} vdots \ 0 &{} 0 &{} 0      &{}ddots &{} mathcal {J}\ 0 &{} 0 &{} 0      &{} ldots &{} 0 end{array}right] _{(mathcal      {J}+1)times (mathcal {J}+1)}. end{aligned}$$    
      (37)    
    From this relation, we are able to derive a matrix forms of the    derivatives of the unknown solutions inEq.    (36).  
      $$begin{aligned} left{      begin{array}{l} dot{S}^{n}_{mathcal      {J},s}(t)=varvec{Q}_mathcal {J}(t),varvec{D}_mathcal      {J},varvec{F}_mathcal {J},varvec{W}^{n,s}_{mathcal      {J},1},quad (dot{S}_v)^{n}_{mathcal      {J},s}(t)=varvec{Q}_mathcal {J}(t),varvec{D}_mathcal      {J},varvec{F}_mathcal {J},varvec{W}^{n,s}_{mathcal      {J},2},\ dot{I}^{n}_{mathcal      {J},s}(t),=varvec{Q}_mathcal {J}(t),varvec{D}_mathcal      {J},varvec{F}_mathcal {J},varvec{W}^{n,s}_{mathcal      {J},3},quad (dot{I}_v)^{n}_{mathcal      {J},s}(t)~=varvec{Q}_mathcal {J}(t),varvec{D}_mathcal      {J},varvec{F}_mathcal {J},varvec{W}^{n,s}_{mathcal      {J},4},\ dot{R}^{n}_{mathcal {J},s}(t)=varvec{Q}_mathcal      {J}(t),varvec{D}_mathcal {J},varvec{F}_mathcal      {J},varvec{W}^{n,s}_{mathcal {J},5},quad      (dot{R}_v)^{n}_{mathcal {J},s}(t)=varvec{Q}_mathcal      {J}(t),varvec{D}_mathcal {J},varvec{F}_mathcal      {J},varvec{W}^{n,s}_{mathcal {J},6},\      dot{J}^{n}_{mathcal {J},s}(t),=varvec{Q}_mathcal      {J}(t),varvec{D}_mathcal {J},varvec{F}_mathcal      {J},varvec{W}^{n,s}_{mathcal {J},7},quad      (dot{J}_v)^{n}_{mathcal {J},s}(t),=varvec{Q}_mathcal      {J}(t),varvec{D}_mathcal {J},varvec{F}_mathcal      {J},varvec{W}^{n,s}_{mathcal {J},8}, end{array}right.      tin K_n. end{aligned}$$    
      (38)    
    The exact solutions of the linearized systemEq.    (32) can be    written in a vectorized form as  
      $$begin{aligned}      varvec{z}_s(t)approx varvec{z}^n_{mathcal {J},s}(t):=      left[ begin{array}{l} S^{n}_{mathcal {J},s}(t)\      (S_v)^{n}_{mathcal {J},s}(t)\ I^{n}_{mathcal {J},s}(t)\      (I_v)^{n}_{mathcal {J},s}(t)\ R^{n}_{mathcal {J},s}(t)\      (R_v)^{n}_{mathcal {J},s}(t)\ J^{n}_{mathcal {J},s}(t)\      (J_v)^{n}_{mathcal {J},s}(t) end{array}right] ,quad      dot{varvec{z}}_s(t)approx      frac{d}{dt}varvec{z}^n_{mathcal {J},s}(t):= left[      begin{array}{l} dot{S}^{n}_{mathcal {J},s}(t)\      (dot{S}_v)^{n}_{mathcal {J},s}(t)\ dot{I}^{n}_{mathcal      {J},s}(t)\ (dot{I}_v)^{n}_{mathcal {J},s}(t)\      dot{R}^{n}_{mathcal {J},s}(t)\ (dot{R}_v)^{n}_{mathcal      {J},s}(t)\ dot{J}^{n}_{mathcal {J},s}(t)\      (dot{J}_v)^{n}_{mathcal {J},s}(t) end{array}right] .      end{aligned}$$    
      (39)    
    We next introduce the following block diagonal matrices of    dimensions (8(mathcal {J}+1)times    8(mathcal {J}+1)) as  
      $$begin{aligned}      widehat{varvec{Q}}(t){} & {} =mathrm {{textbf {Diag}}}      left( begin{array}{cccccccc} varvec{Q}_mathcal      {J}(t)&varvec{Q}_mathcal {J}(t)&varvec{Q}_mathcal      {J}(t)&varvec{Q}_mathcal {J}(t)&varvec{Q}_mathcal      {J}(t)&varvec{Q}_mathcal {J}(t)&varvec{Q}_mathcal      {J}(t)&varvec{Q}_mathcal {J}(t) end{array}right) ,\      widehat{varvec{D}}{} & {} =mathrm {{textbf {Diag}}}      left( begin{array}{cccccccc} varvec{D}_mathcal      {J}&varvec{D}_mathcal {J}&varvec{D}_mathcal      {J}&varvec{D}_mathcal {J}&varvec{D}_mathcal      {J}&varvec{D}_mathcal {J}&varvec{D}_mathcal      {J}&varvec{D}_mathcal {J} end{array}right) ,\      widehat{varvec{F}}{} & {} =mathrm {{textbf {Diag}}}      left( begin{array}{cccccccc} varvec{F}_mathcal      {J}&varvec{F}_mathcal {J}&varvec{F}_mathcal      {J}&varvec{F}_mathcal {J}&varvec{F}_mathcal      {J}&varvec{F}_mathcal {J}&varvec{F}_mathcal      {J}&varvec{F}_mathcal {J} end{array}right) .      end{aligned}$$    
    By the aid of the former definitions, the matrix formats of    (varvec{z}^n_{mathcal    {J},s}(t)) and (dot{varvec{z}}^n_{mathcal {J},s}(t))    will rewrite concisely as  
      $$begin{aligned}      varvec{z}^n_{mathcal      {J},s}(t)=widehat{varvec{Q}}(t),widehat{varvec{F}},varvec{W}^n,quad      dot{varvec{z}}^n_{mathcal      {J},s}(t)=widehat{varvec{Q}}(t),widehat{varvec{F}},widehat{varvec{D}},varvec{W}^n.      end{aligned}$$    
      (40)    
    Here, (varvec{W}^n) is the    successive vector of eight previously defined vector of    unknowns  
      $$begin{aligned}      varvec{W}^n=left[ begin{array}{cccc}      varvec{W}^{n,s}_{mathcal      {J},1}&varvec{W}^{n,s}_{mathcal      {J},2}&ldots&varvec{W}^{n,s}_{mathcal {J},8}      end{array}right] ^T. end{aligned}$$    
    We now can collocate the linearized Eq.(32) at the    zeros of SCPSK given inEq. (17) on    the subdomain (K_n). We get  
      $$begin{aligned}      frac{d}{dt}varvec{z}_{s}(t_{nu      ,n})+varvec{M}_{s-1}(t_{nu ,n}),varvec{z}_{s}(t_{nu      ,n})=varvec{r}_{s-1}(t_{nu ,n}),qquad nu =1,2,ldots      ,mathcal {J}, end{aligned}$$    
      (41)    
    for (s=1,2,ldots). Denote    the coefficient matrix by (widehat{varvec{M}}^n_{s-1}) and the    right-hand-side vector as (widehat{varvec{R}}^n_{s-1}). These    are defined by  
      $$begin{aligned}      widehat{varvec{M}}^n_{s-1}= left[ begin{array}{cccc}      varvec{M}_{s-1}(t_{0,n})&{}textbf{0}&{}ldots      &{}textbf{0}\      textbf{0}&{}varvec{M}_{s-1}(t_{1,n})&{}ldots      &{}textbf{0}\ vdots &{}vdots &{}ddots      &{}vdots \ textbf{0}&{}textbf{0}&{}ldots      &{}varvec{M}_{s-1}(t_{mathcal {J},n})      end{array}right] ,quad widehat{varvec{R}}^n_{s-1}=      left[ begin{array}{c} varvec{r}_{s-1}(t_{0,n})\      varvec{r}_{s-1}(t_{1,n})\ vdots \      varvec{r}_{s-1}(t_{mathcal {J},n}) end{array}right] .      end{aligned}$$    
    Let us define further the vectors of unknowns as  
      $$begin{aligned}      dot{varvec{Z}}^n_s= left[ begin{array}{c}      dot{varvec{z}}_{s}(t_{0,n})\      dot{varvec{z}}_{s}(t_{1,n})\ vdots \      dot{varvec{z}}_{s}(t_{mathcal {J},n}) end{array}right]      ,quad varvec{Z}^n_s= left[ begin{array}{c}      dot{varvec{z}}_{s}(t_{0,n})\      dot{varvec{z}}_{s}(t_{1,n})\ vdots \      dot{varvec{z}}_{s}(t_{mathcal {J},n}) end{array}right] .      end{aligned}$$    
    Consequently, the system of Eq.(41) can    be stated briefly as  
      $$begin{aligned}      dot{varvec{Z}}^{n}_{s}+widehat{varvec{M}}^n_{s-1},varvec{Z}^n_s=widehat{varvec{R}}^n_{s-1},quad      n=0,1,ldots ,N-1, end{aligned}$$    
      (42)    
    and with (s=1,2,ldots).    Before we talk about the fundamental matrix equation, we need    to state two vectors (varvec{Z}^n_s) and (dot{varvec{Z}}^{n}_{s})inEq.    (42) in the    matrix representation forms. The proof is easy by just    considering the definitions of the involved matrices and    vectors inEq. (40).  
    If two vectors (varvec{z}^n_{mathcal {J},s}(t)) and    (dot{varvec{z}}^n_{mathcal    {J},s}(t)) inEq. (40)    computed at the collocation pointsEq. (30), we arrive    at the next matrix forms  
      $$begin{aligned}      varvec{Z}^n_s=bar{widehat{varvec{Q}}},widehat{varvec{F}},varvec{W}^n,qquad      dot{varvec{Z}}^n_s=bar{widehat{varvec{Q}}},widehat{varvec{F}},widehat{varvec{D}},varvec{W}^n,      end{aligned}$$    
      (43)    
    where the matrix (bar{widehat{varvec{Q}}}) is given by  
      $$begin{aligned}      bar{widehat{varvec{Q}}}=[widehat{varvec{Q}}(t_{0,n})quad      widehat{varvec{Q}}(t_{1,n})quad ldots quad      widehat{varvec{Q}}(t_{mathcal {J},n}) ]^T.      end{aligned}$$    
    Moreover, two matrices (widehat{varvec{Q}},    widehat{varvec{F}}) are defined inEq.    (40).    Similarly, the vector (varvec{W}^n) is given inEq.    (40).  
    By turning to relationEq. (40) we    substitute the derived matrix formats into it. Precisely    speaking, after replacing (varvec{Z}^n_s) and (dot{varvec{Z}}^n_s) we gain the    so-called fundamental matrix equation (FME) of the form  
      $$begin{aligned}      varvec{B}_n,varvec{W}^n=widehat{varvec{R}}^n_{s-1},      quad textrm{or}quad left[      varvec{B}_n;widehat{varvec{R}}^n_{s-1}right] ,quad sge      1,~0le nle N-1, end{aligned}$$    
      (44)    
    where  
      $$begin{aligned}      varvec{B}_n:=bar{widehat{varvec{Q}}},widehat{varvec{F}}+widehat{varvec{M}}^n_{s-1},bar{widehat{varvec{Q}}},widehat{varvec{F}},widehat{varvec{D}}.      end{aligned}$$    
    To complete the process of QLM-SCPSK approach, it is necessary    to implement the initial conditionsinEq.    (2) and add them    intoEq. (44). So, the    next task is to constitute the matrix representation    ofEq. (2). Let us    approach (trightarrow 0) in    the first relation ofEq. (40). It    gives us  
      $$begin{aligned}      varvec{B}_{0,n},varvec{W}^n=widehat{varvec{R}}^n_{s-1,0},qquad      varvec{B}_{0,n}:=widehat{varvec{Q}}(0),widehat{varvec{F}},quad      widehat{varvec{R}}^n_{s-1,0}=left[ begin{array}{cccccccc}      S_0&S_{v0}&I_0&I_{v0}&R_0&R_{v0}&J_0&J_{v0}      end{array}right] ^T. end{aligned}$$    
    We then replace eight rows of the augmented matrix ([varvec{B}_n;widehat{varvec{R}}^n_{s-1}])    by the already obtained row matrix ([varvec{B}_{0,n};widehat{varvec{R}}^n_{s-1,0}]).    Denote the modified FME by  
      $$begin{aligned}      check{varvec{B}_{n}},varvec{W}^n=check{textbf{R}}^n_{s-1},quad      textrm{or} quad left[      check{varvec{B}_{n}};check{textbf{R}}^n_{s-1}right] .      end{aligned}$$    
      (45)    
    This implies that the solution of the modelEq.    (1) is    obtainable on each subdomain (K_n) by iterating (n=0,1,ldots ,N-1). On (K_0) as the first subdomain, the given    initial conditionsinEq. (2) will be    used to find the corresponding approximations for the    systemEq. (1). Hence, this    approximate solutions on (K_0) evaluated at the starting point of    (K_1) will be utilized for    the initial conditions on (K_1). By repeating this process we    acquire all approximations on all (K_n) for (0le nle N-1).  
    Generally, finding the true solutions of the COVID-19    systemEq. (1) is not    possible practically. In this case, the residual error    functions (REFs) help us to measure the quality of    approximations obtained by the QLM-SCPSK technique. Once we    calculate the eight approximations by the illustrated method,    we substitute them into the model systemEq.    (1). In fact,    the REFs are defined as the difference between the left-hand    side and the right-hand side of the considered equation. On the    subdomain (K_n) we set the    REFs as  
      $$begin{aligned}{} & {} mathbb      {R}_{1,mathcal {J}}^{n}(t):=left| dot{S}^{n}_{mathcal      {J},s}(t)-Lambda +beta S^{n}_{mathcal      {J},s}(t)L^n_{mathcal {J},s}(t)+(lambda +mu )      S^{n}_{mathcal {J},s}(t)- theta _1 R^{n}_{mathcal      {J},s}(t)right| cong 0, nonumber \{} & {} mathbb      {R}_{2,mathcal {J}}^{n}(t):=left| (dot{S_v})^{n}_{mathcal      {J},s}(t)+beta ' (S_v)^{n}_{mathcal {J},s}(t)L^n_{mathcal      {J},s}(t)- theta _2(R_v)^{n}_{mathcal {J},s}(t)- lambda      S^{n}_{mathcal {J},s}(t)+ (delta +mu ) (S_v)^{n}_{mathcal      {J},s}(t)right| cong 0, nonumber \{} & {} mathbb      {R}_{3,mathcal {J}}^{n}(t):=left| dot{I}^{n}_{mathcal      {J},s}(t)-beta S^{n}_{mathcal {J},s}(t)L^n_{mathcal      {J},s}(t)+ (gamma _1+alpha _1+mu ) I^{n}_{mathcal      {J},s}(t)right| cong 0, nonumber \{} & {} mathbb      {R}_{4,mathcal {J}}^{n}(t):=left| (dot{I_v})^{n}_{mathcal      {J},s}(t)- beta ' (S_v)^{n}_{mathcal {J},s}(t)L^n_{mathcal      {J},s}(t)+ (gamma _2+alpha _2+mu )(I_v)^{n}_{mathcal      {J},s}(t)right| cong 0, nonumber \{} & {} mathbb      {R}_{5,mathcal {J}}^{n}(t):=left| dot{R}^{n}_{mathcal      {J},s}(t) - gamma _1 I^{n}_{mathcal {J},s}(t)+(theta      _1+mu ) R^{n}_{mathcal {J},s}(t)- eta _1 J^{n}_{mathcal      {J},s}(t)right| cong 0, nonumber \{} & {} mathbb      {R}_{6,mathcal {J}}^{n}(t):=left| (dot{R_v})^{n}_{mathcal      {J},s}(t)- gamma _2 (I_v)^{n}_{mathcal {J},s}(t)+ (theta      _2+mu ) (R_v)^{n}_{mathcal {J},s}(t)- eta      _2(J_v)^{n}_{mathcal {J},s}(t)- delta (S_v)^{n}_{mathcal      {J},s}(t)right| cong 0, nonumber \{} & {} mathbb      {R}_{7,mathcal {J}}^{n}(t):=left| dot{J}^{n}_{mathcal      {J},s}(t) -alpha _1 I^{n}_{mathcal {J},s}(t)+ (eta _1+mu      _1)J^{n}_{mathcal {J},s}(t)right| cong 0, nonumber \{} &      {} mathbb {R}_{8,mathcal {J}}^{n}(t):=left|      (dot{J_v})^{n}_{mathcal {J},s}(t)- alpha      _2(I_v)^{n}_{mathcal {J},s}(t) +(eta _2+mu _2)      (J_v)^{n}_{mathcal {J},s}(t)right| cong 0,      end{aligned}$$    
      (46)    
    for a fixed iteration number s and we have defined    (L^n_{mathcal    {J},s}:=I^{n}_{mathcal {J},s}(t)+ (I_v)^{n}_{mathcal    {J},s}(t)) for brevity.  
    Analogously, at the fixed iteration s, the numerical    order of convergence associated with the obtained REFs can be    defined in the infinity norm. These are given by  
      $$begin{aligned} L^{infty }_{ell      }equiv L^{infty }_{ell }(mathcal {J}):=max _{0le nle      N-1}left( max _{tin K_n},left| mathbb {R}_{ell      ,mathcal {J}}^{n}(t)right| right) ,quad ell =1,2,ldots      ,8. end{aligned}$$    
    Therefore, the convergence order (Co) for each solution is    defined by  
      $$begin{aligned}      textrm{Co}_{mathcal {J}}^{ell }:=log _2left(      frac{L^{infty }_{ell }(mathcal {J})}{L^{infty }_{ell      }(2mathcal {J})}right) ,quad ell =1,2,ldots ,8.      end{aligned}$$    
      (47)    
View original post here: 
Stability analysis and numerical evaluations of a COVID-19 model with vaccination - BMC Medical Research ... - BMC Medical Research Methodology