Fine tuning of CpG spatial distribution with DNA origami for improved cancer vaccination – Nature.com
March 16, 2024
Sahin, U. & Tureci, O. Personalized vaccines for cancer immunotherapy. Science 359, 13551360 (2018).
Article ADS CAS PubMed Google Scholar
Bauer, S. et al. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc. Natl Acad. Sci. USA 98, 92379242 (2001).
Article ADS CAS PubMed PubMed Central Google Scholar
Bode, C., Zhao, G., Steinhagen, F., Kinjo, T. & Klinman, D. M. CpG DNA as a vaccine adjuvant. Expert Rev. Vaccines 10, 499511 (2011).
Article CAS PubMed PubMed Central Google Scholar
Klinman, D. M., Sato, T. & Shimosato, T. Use of nanoparticles to deliver immunomodulatory oligonucleotides. WIREs Nanomed. Nanobiotechnol. 8, 631637 (2016).
Article CAS Google Scholar
Schuller, V. J. et al. Cellular immunostimulation by CpG-sequence-coated DNA origami structures. ACS Nano 5, 96969702 (2011).
Article PubMed Google Scholar
Casaletto, J. B. & McClatchey, A. I. Spatial regulation of receptor tyrosine kinases in development and cancer. Nat. Rev. Cancer 12, 387400 (2012).
Article CAS PubMed PubMed Central Google Scholar
Shaw, A. et al. Spatial control of membrane receptor function using ligand nanocalipers. Nat. Methods 11, 841846 (2014).
Article CAS PubMed Google Scholar
Kwon, P. S. et al. Designer DNA architecture offers precise and multivalent spatial pattern-recognition for viral sensing and inhibition. Nat. Chem. 12, 2635 (2020).
Article CAS PubMed Google Scholar
Pulendran, B. & Ahmed, R. Translating innate immunity into immunological memory: implications for vaccine development. Cell 124, 849863 (2006).
Article CAS PubMed Google Scholar
Ohto, U. et al. Structural basis of CpG and inhibitory DNA recognition by Toll-like receptor 9. Nature 520, 702705 (2015).
Article ADS CAS PubMed Google Scholar
Leleux, J. A., Pradhan, P. & Roy, K. Biophysical attributes of CpG presentation control TLR9 signaling to differentially polarize systemic immune responses. Cell Rep. 18, 700710 (2017).
Article CAS PubMed Google Scholar
Schmidt, N. W. et al. Liquid-crystalline ordering of antimicrobial peptide-DNA complexes controls TLR9 activation. Nat. Mater. 14, 696700 (2015).
Article ADS CAS PubMed Google Scholar
Lee, E. Y. et al. A review of immune amplification via ligand clustering by self-assembled liquid-crystalline DNA complexes. Adv. Colloid Interface Sci. 232, 1724 (2016).
Article ADS CAS PubMed PubMed Central Google Scholar
Comberlato, A., Koga, M. M., Nussing, S., Parish, I. A. & Bastings, M. M. C. Spatially controlled activation of Toll-like receptor 9 with DNA-based nanomaterials. Nano Lett. 22, 25062513 (2022).
Article ADS CAS PubMed PubMed Central Google Scholar
Du, R. R. et al. Innate immune stimulation using 3D wireframe DNA origami. ACS Nano 16, 2034020352 (2022).
Article CAS PubMed PubMed Central Google Scholar
Johansson, M., Denardo, D. G. & Coussens, L. M. Polarized immune responses differentially regulate cancer development. Immunol. Rev. 222, 145154 (2008).
Article CAS PubMed PubMed Central Google Scholar
Yew, N. S. et al. CpG-depleted plasmid DNA vectors with enhanced safety and long-term gene expression in vivo. Mol. Ther. 5, 731738 (2002).
Article CAS PubMed Google Scholar
Kumar, V. et al. DNA nanotechnology for cancer therapy. Theranostics 6, 710725 (2016).
Article CAS PubMed PubMed Central Google Scholar
Udomprasert, A. & Kangsamaksin, T. DNA origami applications in cancer therapy. Cancer Sci. 108, 15351543 (2017).
Article CAS PubMed PubMed Central Google Scholar
Li, S. et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 36, 258264 (2018).
Article CAS PubMed Google Scholar
Liu, S. et al. A DNA nanodevice-based vaccine for cancer immunotherapy. Nat. Mater. 20, 421430 (2021).
Article ADS CAS PubMed Google Scholar
Kern, N., Dong, R., Douglas, S. M., Vale, R. D. & Morrissey, M. A. Tight nanoscale clustering of Fc receptors using DNA origami promotes phagocytosis. eLife 10, e68311 (2021).
Article CAS PubMed PubMed Central Google Scholar
Berger, R. M. L. et al. Nanoscale FasL organization on DNA origami to decipher apoptosis signal activation in cells. Small 17, e2101678 (2021).
Article PubMed Google Scholar
Rothemund, P. W. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297302 (2006).
Article ADS CAS PubMed Google Scholar
Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414418 (2009).
Article ADS CAS PubMed PubMed Central Google Scholar
Liedl, T., Hogberg, B., Tytell, J., Ingber, D. E. & Shih, W. M. Self-assembly of three-dimensional prestressed tensegrity structures from DNA. Nat. Nanotechnol. 5, 520524 (2010).
Article ADS CAS PubMed PubMed Central Google Scholar
Shih, W. M. Exploiting weak interactions in DNA self-assembly. Science 347, 14171418 (2015).
Article ADS CAS PubMed Google Scholar
Dietz, H., Douglas, S. M. & Shih, W. M. Folding DNA into twisted and curved nanoscale shapes. Science 325, 725730 (2009).
Article ADS CAS PubMed PubMed Central Google Scholar
Shen, H. et al. Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology 117, 7888 (2006).
Article CAS PubMed PubMed Central Google Scholar
Min, Y. et al. Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nat. Nanotechnol. 12, 877882 (2017).
Article ADS CAS PubMed PubMed Central Google Scholar
Chesson, C. B. & Zloza, A. Nanoparticles: augmenting tumor antigen presentation for vaccine and immunotherapy treatments of cancer. Nanomedicine 12, 26932706 (2017).
Article CAS PubMed PubMed Central Google Scholar
Ponnuswamy, N. et al. Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation. Nat. Commun. 8, 15654 (2017).
Article ADS CAS PubMed PubMed Central Google Scholar
Anastassacos, F. M., Zhao, Z., Zeng, Y. & Shih, W. M. Glutaraldehyde cross-linking of oligolysines coating DNA origami greatly reduces susceptibility to nuclease degradation. J. Am. Chem. Soc. 142, 33113315 (2020).
Article CAS PubMed Google Scholar
Lucas, C. R. et al. DNA origami nanostructures elicit dose-dependent immunogenicity and are nontoxic up to high doses in vivo. Small 18, e2108063 (2022).
Article PubMed PubMed Central Google Scholar
Wamhoff, E. C. et al. Evaluation of nonmodified wireframe DNA origami for acute toxicity and biodistribution in mice. ACS Appl. Bio. Mater. 6, 19601969 (2023).
Article CAS PubMed PubMed Central Google Scholar
Douglas, S. M. et al. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 37, 50015006 (2009).
Article CAS PubMed PubMed Central Google Scholar
Njongmeta, L. M. et al. CD205 antigen targeting combined with dendritic cell recruitment factors and antigen-linked CD40L activation primes and expands significant antigen-specific antibody and CD4(+) T cell responses following DNA vaccination of outbred animals. Vaccine 30, 16241635 (2012).
Article CAS PubMed Google Scholar
Lahoud, M. H. et al. DEC-205 is a cell surface receptor for CpG oligonucleotides. Proc. Natl Acad. Sci. USA 109, 1627016275 (2012).
Article ADS CAS PubMed PubMed Central Google Scholar
You, C. X. et al. AAV2/IL-12 gene delivery into dendritic cells (DC) enhances CTL stimulation above other IL-12 applications: evidence for IL-12 intracrine activity in DC. Oncoimmunology 1, 847855 (2012).
Article PubMed PubMed Central Google Scholar
Heo, M. B., Kim, S. Y., Yun, W. S. & Lim, Y. T. Sequential delivery of an anticancer drug and combined immunomodulatory nanoparticles for efficient chemoimmunotherapy. Int J. Nanomed. 10, 59815992 (2015).
CAS Google Scholar
Scheuerpflug, A. et al. The role of dendritic cells for therapy of B-cell lymphoma with immune checkpoint inhibitors. Cancer Immunol. Immunother. 70, 13431350 (2020).
Article PubMed PubMed Central Google Scholar
Keestra, A. M., de Zoete, M. R., Bouwman, L. I. & van Putten, J. P. Chicken TLR21 is an innate CpG DNA receptor distinct from mammalian TLR9. J. Immunol. 185, 460467 (2010).
Article CAS PubMed Google Scholar
Oldenburg, M. et al. TLR13 recognizes bacterial 23S rRNA devoid of erythromycin resistance-forming modification. Science 337, 11111115 (2012).
Article ADS CAS PubMed Google Scholar
Spies, B. et al. Vaccination with plasmid DNA activates dendritic cells via Toll-like receptor 9 (TLR9) but functions in TLR9-deficient mice. J. Immunol. 171, 59085912 (2003).
Article CAS PubMed Google Scholar
Yu, D. et al. Immunomersnovel 3-3-linked CpG oligodeoxyribonucleotides as potent immunomodulatory agents. Nucleic Acids Res. 30, 44604469 (2002).
Article CAS PubMed PubMed Central Google Scholar
Minari, J., Mochizuki, S. & Sakurai, K. Enhanced cytokine secretion owing to multiple CpG side chains of DNA duplex. Oligonucleotides 18, 337344 (2008).
Article CAS PubMed Google Scholar
Smith, L. K. et al. Interleukin-10 directly inhibits CD8(+) T cell function by enhancing N-glycan branching to decrease antigen sensitivity. Immunity 48, 299312 e295 (2018).
Article CAS PubMed PubMed Central Google Scholar
Li, A. W. et al. A facile approach to enhance antigen response for personalized cancer vaccination. Nat. Mater. 17, 528534 (2018).
Article ADS CAS PubMed PubMed Central Google Scholar
Kreiter, S. et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520, 692696 (2015).
Article ADS CAS PubMed PubMed Central Google Scholar
Toubi, E. & Shoenfeld, Y. Protective autoimmunity in cancer (review). Oncol. Rep. 17, 245251 (2007).
CAS PubMed Google Scholar
View original post here:
Fine tuning of CpG spatial distribution with DNA origami for improved cancer vaccination - Nature.com