Priming antibody responses to the fusion peptide in rhesus macaques – Nature.com
							July 12, 2024
							        National Center for Immunization and Respiratory Diseases.        General recommendations on immunization  recommendations        of the Advisory Committee on Immunization Practices (ACIP).        MMWR Recomm. Rep. 60, 164 (2011).      
                Google Scholar      
        Watson, J. C. et al. An evaluation of measles revaccination        among school-entry-aged children. Pediatrics        97, 613618 (1996).      
        Article CAS PubMed                Google Scholar      
        Poland, G. A. et al. Measles reimmunization in children        seronegative after initial immunization. JAMA        277, 11561158 (1997).      
        Article        CAS PubMed                Google Scholar      
        Banatvala, J. E. & Van Damme, P. Hepatitis B vaccine do we        need boosters? J. Viral Hepat. 10, 16        (2003).      
        Article        CAS PubMed                Google Scholar      
        Miner, M. D., Corey, L. & Montefiori, D. Broadly        neutralizing monoclonal antibodies for HIV prevention.        J. Int AIDS Soc. 24, e25829 (2021).      
        Article CAS PubMed        PubMed        Central         Google Scholar      
        Corey, L. et al. Two randomized trials of neutralizing        antibodies to prevent HIV-1 acquisition. N. Engl. J.        Med 384, 10031014 (2021).      
        Article CAS PubMed        PubMed        Central         Google Scholar      
        Walker, B. D. The AMP Trials - A glass half full. N.        Engl. J. Med 384, 10681069 (2021).      
        Article PubMed                Google Scholar      
        Klein, F. et al. Somatic mutations of the immunoglobulin        framework are generally required for broad and potent HIV-1        neutralization. Cell 153, 126138 (2013).      
        Article        CAS PubMed        PubMed        Central         Google Scholar      
        Kwong, P. D. & Mascola, J. R. Human antibodies that        neutralize HIV-1: identification, structures, and B cell        ontogenies. Immunity 37, 412425 (2012).      
        Article        CAS PubMed        PubMed        Central         Google Scholar      
        Andrabi, R. et al. Identification of common features in        prototype broadly neutralizing antibodies to HIV envelope        V2 Apex to facilitate vaccine design. Immunity        43, 959973 (2015).      
        Article        CAS PubMed        PubMed        Central         Google Scholar      
        Verkoczy, L., Kelsoe, G., Moody, M. A. & Haynes, B. F. Role        of immune mechanisms in induction of HIV-1 broadly        neutralizing antibodies. Curr. Opin. Immunol.        23, 383390 (2011).      
        Article        CAS PubMed        PubMed        Central         Google Scholar      
        Sather, D. N. et al. Factors associated with the        development of cross-reactive neutralizing antibodies        during human immunodeficiency virus type 1 infection. J.        Virol. 83, 757769 (2009).      
        Article CAS PubMed                Google Scholar      
        Burton, D. R. & Hangartner, L. Broadly neutralizing        antibodies to HIV and their role in vaccine design. Annu        Rev. Immunol. 34, 635659 (2016).      
        Article        CAS PubMed        PubMed        Central         Google Scholar      
        Kepler, T. B. et al. Immunoglobulin gene insertions and        deletions in the affinity maturation of HIV-1 broadly        reactive neutralizing antibodies. Cell Host Microbe        16, 304313 (2014).      
        Article        CAS PubMed        PubMed        Central         Google Scholar      
        Cirelli, K. M. et al. Slow delivery immunization enhances        HIV neutralizing antibody and germinal center responses via        modulation of immunodominance. Cell 177,        11531171.e28 (2019).      
        Article        CAS PubMed        PubMed        Central         Google Scholar      
        Hu, J. K. et al. Murine antibody responses to cleaved        soluble HIV-1 envelope trimers are highly restricted in        specificity. J. Virol. 89, 1038310398        (2015).      
        Article CAS PubMed        PubMed        Central         Google Scholar      
        Pauthner, M. et al. Elicitation of robust Tier 2        neutralizing antibody responses in nonhuman primates by HIV        envelope trimer immunization using optimized approaches.        Immunity 46, 10731088.e6 (2017).      
        Article        CAS PubMed        PubMed        Central         Google Scholar      
        Tam, H. H. et al. Sustained antigen availability during        germinal center initiation enhances antibody responses to        vaccination. Proc Natl Acad Sci USA. 113,        E6639E6648 (2016).      
        Binley, J. M. et al. Profiling the specificity of        neutralizing antibodies in a large panel of plasmas from        patients chronically infected with human immunodeficiency        virus type 1 subtypes B and C. J. Virol. 82,        1165111668 (2008).      
        Article CAS PubMed        PubMed        Central         Google Scholar      
        West, A. P. et al. Computational analysis of anti-HIV-1        antibody neutralization panel data to identify potential        functional epitope residues. Proc. Natl Acad. Sci.        USA 110, 1059810603 (2013).      
        Article CAS PubMed        PubMed        Central         Google Scholar      
        Burton, D. R. et al. A blueprint for HIV vaccine discovery.        Cell Host Microbe 12, 396407 (2012).      
        Article        CAS PubMed        PubMed        Central         Google Scholar      
        Hraber, P. et al. Prevalence of broadly neutralizing        antibody responses during chronic HIV-1 infection.        AIDS 28, 163169 (2014).      
        Article        CAS PubMed                Google Scholar      
        Kong, R. et al. Fusion peptide of HIV-1 as a site of        vulnerability to neutralizing antibody. Science        352, 828833 (2016).      
        Article CAS PubMed        PubMed        Central         Google Scholar      
        Cheng C., et al. Immune monitoring reveals fusion peptide        priming to imprint cross-clade HIV-neutralizing responses        with a characteristic early B cell signature. Cell        Rep. 32, 107981 (2020).      
        Van Gils, M. J. et al. An HIV-1 antibody from an elite        neutralizer implicates the fusion peptide as a site of        vulnerability. Nat. Microbiol. 2, 16199        (2016).      
        Article        PubMed        PubMed        Central         Google Scholar      
        Cottrell, C. A. et al. Mapping the immunogenic landscape of        near-native HIV-1 envelope trimers in non-human primates.        PLoS Pathog. 16, e1008753 (2020).      
        Article        CAS PubMed        PubMed        Central         Google Scholar      
        Nogal, B. et al. Mapping polyclonal antibody responses in        non-human primates vaccinated with HIV env trimer subunit        vaccines. Cell Rep. 30, 37553765.e7 (2020).      
        Article        CAS PubMed        PubMed        Central         Google Scholar      
        Lee, J. H. et al. Long-primed germinal centres with        enduring affinity maturation and clonal migration.        Nature 609, 9981004 (2022).      
        Article        CAS PubMed        PubMed        Central         Google Scholar      
        Kong, R. et al. Antibody lineages with vaccine-induced        antigen-binding hotspots develop broad HIV neutralization.        Cell 178, 567584.e19 (2019).      
        Article        CAS PubMed        PubMed        Central         Google Scholar      
        Xu, K. et al. Epitope-based vaccine design yields fusion        peptide-directed antibodies that neutralize diverse strains        of HIV-1. Nat. Med. 24, 857867 (2018).      
        Article        CAS PubMed        PubMed        Central         Google Scholar      
        Torrents de la Pea, A. et al. Improving the immunogenicity        of native-like HIV-1 envelope trimers by        hyperstabilization. Cell Rep. 20, 18051817        (2017).      
        Article        PubMed        PubMed        Central         Google Scholar      
        Wagh, K. et al. Completeness of HIV-1 envelope glycan        shield at transmission determines neutralization breadth.        Cell Rep. 25, 893908.e7 (2018).      
        Article        CAS PubMed        PubMed        Central         Google Scholar      
        McCoy, L. E. et al. Holes in the glycan shield of the        native HIV envelope are a target of trimer-elicited        neutralizing antibodies. Cell Rep. 16,        23272338 (2016).      
        Article        CAS PubMed        PubMed        Central         Google Scholar      
        Klasse, P. J. et al. Sequential and simultaneous        immunization of rabbits with HIV-1 envelope Glycoprotein        SOSIP.664 trimers from Clades A, B and C. PLoS        Pathog. 12, e1005864 (2016).      
        Article        CAS PubMed        PubMed        Central         Google Scholar      
        Derking, R. et al. Enhancing glycan occupancy of soluble        HIV-1 envelope trimers to mimic the native viral spike.        Cell Rep. 35, 108933 (2021).      
        Article        CAS PubMed        PubMed        Central         Google Scholar      
        Yang, Y. R. et al. Autologous antibody responses to an HIV        envelope glycan hole are not easily broadened in rabbits.        J. Virol. 94, e0186119 (2020).      
        Article PubMed        PubMed        Central         Google Scholar      
        Lee, J. H. et al. A broadly neutralizing antibody targets        the dynamic HIV Envelope Trimer Apex via a long,        rigidified, and anionic -Hairpin structure.        Immunity 46, 690702 (2017).      
        Article        CAS PubMed        PubMed        Central         Google Scholar      
        Walker, L. M. et al. Broad neutralization coverage of HIV        by multiple highly potent antibodies. Nature        477, 466470 (2011).      
        Article CAS PubMed        PubMed        Central         Google Scholar      
        Marasco, W. A. et al. Characterization of the cDNA of a        broadly reactive neutralizing human anti-gp120 monoclonal        antibody. J. Clin. Invest 90, 14671478        (1992).      
        Article CAS PubMed        PubMed        Central         Google Scholar      
        Blattner, C. et al. Structural delineation of a quaternary,        cleavage-dependent epitope at the gp41-gp120 interface on        intact HIV-1 Env trimers. Immunity 40,        669680 (2014).      
        Article        CAS PubMed        PubMed        Central         Google Scholar      
        Heath, P. T. et al. Safety and Efficacy of NVX-CoV2373        Covid-19 Vaccine. N. Engl. J. Med 385,        11721183 (2021).      
        Article CAS PubMed                Google Scholar      
        Lvgren Bengtsson, K., Morein, B. & Osterhaus, A. D. ISCOM        technology-based Matrix MTM adjuvant: success in        future vaccines relies on formulation. Expert Rev.        Vaccines 10, 401403 (2011).      
        Article PubMed                Google Scholar      
        Hebeis, B. J. et al. Activation of virus-specific memory B        cells in the absence of T cell help. J. Exp. Med        199, 593602 (2004).      
        Article CAS PubMed        PubMed        Central         Google Scholar      
        Lutz, J. et al. Reactivation of IgG-switched memory B cells        by BCR-intrinsic signal amplification promotes IgG antibody        production. Nat. Commun. 6, 8575 (2015).      
        Article CAS PubMed        PubMed        Central         Google Scholar      
        Van Hoeven, N. et al. A formulated TLR7/8 agonist is a        flexible, highly potent and effective adjuvant for pandemic        influenza vaccines. Sci. Rep. 7, 46426        (2017).      
        Article PubMed        PubMed        Central         Google Scholar      
        Silva, M. et al. A particulate saponin/TLR agonist vaccine        adjuvant alters lymph flow and modulates adaptive immunity.        Sci. Immunol. 6, eabf1152 (2021).      
        Article        CAS PubMed        PubMed        Central         Google Scholar      
        Havenar-Daughton, C. et al. Direct probing of germinal        center responses reveals immunological features and        bottlenecks for neutralizing antibody responses to HIV Env        Trimer. Cell Rep. 17, 21952209 (2016).      
        Article        CAS PubMed        PubMed        Central         Google Scholar      
        Bianchi, M. et al. Electron-Microscopy-based epitope        mapping defines specificities of polyclonal antibodies        elicited during HIV-1 BG505 envelope trimer immunization.        Immunity 49, 288300.e8 (2018).      
        Article        CAS PubMed        PubMed        Central         Google Scholar      
        Antanasijevic, A. et al. Polyclonal antibody responses to        HIV Env immunogens resolved using cryoEM. Nat.        Commun. 12, 4817 (2021).      
        Article        CAS PubMed        PubMed        Central         Google Scholar      
        Havenar-Daughton, C., Lee, J. H. & Crotty, S. Tfh cells and        HIV bnAbs, an immunodominance model of the HIV neutralizing        antibody generation problem. Immunol. Rev.        275, 4961 (2017).      
        Article CAS PubMed                Google Scholar      
        Nogal, B. et al. HIV envelope trimer-elicited autologous        neutralizing antibodies bind a region overlapping the N332        glycan supersite. Sci. Adv. 6, eaba0512        (2020).      
        Article CAS PubMed        PubMed        Central         Google Scholar      
Read more:
Priming antibody responses to the fusion peptide in rhesus macaques - Nature.com